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1. Phys: Condcns. Matter 4 (1992) 5391-5397. Printed in the UK 

A fast real-space method for determining tight-binding linear 
muffin-tin orbital two-centre integrals 

J Kollar and B Ujfalussy 
Central Research Instilute for Physics, H-I525 Budapest, PO Box 49, Hungary 

Received 21 October 1991,' in final [orm 9 February 1992 

Abslmd. We derive an equation for the direct real space determination of approximate 
twOcenVe integnls in the tight-binding Lkm) merhod. The method allows us to define 
evplicitly the m@st localized screened Svucture mnsianls for different clysial structures. 
!?"pies are given for SC FCC, Bcc and diamond structures and for silicon. 

In the last decade the linear methods of band theory, especially the LMTO method 
111, has become one of the most frequently used techniques in electronic structure 
calculations. One of the most important steps in the evolution of the method was 
the development of the so called tight-binding (m MO) theory [Z]. It has been 
succesfully applied to several problem such as the calculation of the electronic stat= 
in substitutionally random alloys [3]. 

An important and one of the most time-consuming steps in such a band-structure 
calculation is the determination of the structure constant matrix. Recently this has 
usually been made using standard real-space techniques to generate the screened 
structure constant matrix (S) by inverting the positive definite matrix a -5 (a stands 
for the screening matrix, and, in this paper, for technical reasons, we use a 'bar' to 
denote the unscreened structure constants), or by iterating the Dyson equation. The 
main purpose of this paper is to provide a simple and efficient way to calculate real- 
space tight-binding LMTO structure constants within the framework of the two-centre 
approximation, and to carry out fine tuning of the screening parameters. While in 
the traditional methods the sizes of the matrices to be inverted are determined by the 
number of atoms considered (and, of course, by the number of orbitals), in our case 
the matrix dimensions are determined by the number of shells used in the calculation. 

In the 1~ WO method the bare (s) and screened (S) structure constants are 
connected by the Dyson equation [4] 

S(R) = S(R) 4- x S ( R -  R')aS(R'). (1) 
R' 

'The bare structure constants and the corresponding two-centre integrals are defined, 
for example, in [SI or [4]. The quantities appearing in the above equation are matn- 
ces in the (L, L') indices, where L denotes the (I, i) angular momentum quantum 
numbers. We have assumed that the screening matrix Q is site independent and 
diagonal in (L, L'): 

~ L , L '  = ~ L ~ L ~ L I  
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'bbk 1. k a n t l e  inlegrals for the SC, FCC and Bcc lattices. ResulLF arc obtained by 
salving equation (12) for six shells for the optimized ImliZBtion parametem. 

zc Bcc POC 
a. =0.372117 a. = 0.336008 a. = 0.296067 
op = 0.075298 op = 0.047311 ap = 0.030007 
ad =0.019453 ad = 0.008 179 ad = 0.003 169 

I Shell 1 Shell 2 Shell 3 Shell I Shell 2 Shell 3 Shell I Shell 2 Shell 3 

sa -1.131 

ppa 4.417 
ppr 4 8 6 4  
do -2512 

pdr 1.720 
dda -7.061 
ddr 3.572 

6pa 2226 

pdn -5.248 

dd6 -a547 

-a064 
ami 
a125 

-a091 
-0.024 
-a092 

a121 
-0.207 

a iz 
- a054 

-0.W 
0.011 
0.030 

-0.023 
-0.014 
-0.057 
aozs 

-ai15 

-0.016 
0.027 

-0.568 -0.208 
1.143 0.447 
2320 0.965 

-0.373 -0.064 
-1.364 -0.609 
-2855 -1309 

0.842 0.163 
-1788 -1.762 

1.900 0.422 
-a205 -0.028 

0.OOO 
0.000 

-0.001 
-0.001 

0.000 
0.001 

-0.001 
om1 
0.000 

a m  

-P446. 
0.924 
1.952 

-0.342 - 1.083 
-2388 

a744 
-3.203 

1.642 
-0.205 

-0.038 
0.091 
0.204 
0.002 

-0.140 

-0.001 

0.015 

4 2 9 8  

-a381 

-0,003 

a m  
-awl 
a m  

-awl 
0.wz 
0.001 

-0.w2 

LIMO 

aw2 

a003 

Since the on-site elemen& of the bare structure mnstant matrix mnkh, the on-site 
elements of the screened structure constants are determined by the equation 

S(0) = S(-R')aS(R'). 
R'#O 

Now let us write the Slater-Koster (61 relations which connect the structure constant 
matrix to the two-centre integrals in the form 

Here Isao,Ispo, ... are the two-centre overlap integrals, while the values of the matrix 
T can be easily derived from table 1 of the paper by Slater and Koster [6]. Using the 
relation 

ET;:;$,,,*:;;+, = @(cl)-  1 6 p , p 8  
i ',i 

equation (3) can be inverted in the following way: 

(4) 

Here O(p) - '  = 1 for p = U and 2 for p = x , 6 .  We call attention to the fact that 
the above equation can also serve as a definition of the effective two-centre integrals 
for the general case without using the two-centre approximation. 'Xis relation allows 
us to derive a system of inhomogeneous linear equations directly for the two-centre 
integrals from the Dyson equation (1). For a v t e m  having some kind of point-group 
symmetry, where the different sites are arranged in shells around the origin, this 
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reformulation of the Dyson equation allows us to reduce the number of variables 
drastically and serves as a very effective tool for the realspace determination of the 
TB LMTO structure mnstants within the framework of the two-centre approximation. 
Let us denote the atomic positions in the nth shell by R, and their distance from the 
origin by R,. Using the relations for the onsite elements (2) after some manipulation 
we get 

where 

R.2 <,<l,i" 

In equation (7) the matrix S(R,,R,,) is defined in terms of the bare structure 
constant matrix by the expression 

S(R,,R,,) = s (R,  - q , ) + s ( R , ) a s ( - R , , ) .  (8) 

In order to show that the right-hand side of equation (7) does not depend on the 
position vector R, but does depend on the shell index n, let us define 

# . , I  hi,,' h 

~;,'j,~,,,,.,, ( R ,  )6,,,,,,, = c~:,;~,,,p,(-~,)~l,,;~,p,, (R, )  (9) 
i,, 

and 

In terms of these quantities the matrix 2 can be witten as 

,%iy;$(n,n') = ~ ~ T f , , f j j , , , ( l  R, -Rne I)Yf;:f;',:p"(R,,R,,) 
R., ~r' 

It is easy to show that the matrices V and W have the following symmetry properties: 

V(TR,,TR,,) = V(R,,R,,) 

and 

W(TR,,TR,,) = W ( R , ,  R,,) 
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where T is some symmetry operation of the lattice. Now the lattice vectors in the 
nth shell can be written as R, = TR:, while in the nth shell R,, = T'R:,. Using 
this notation the summation over R,, (or T') in equation (11) can be rewritten as a 
summation mer T" = T-IT' using the relation 

J Kollrir and B U j f a l q  

V(R,, R,,,) = V(TR:,T'R:,) = V(R:,T"R:,). 

hrthermore, if we notice that I TR: - T'R:, I=] R: - T"R:, 1, we can really see 
that the right-hand side of equation (11) does not depend on T and takes the same 
values for all the lattice sites belonging to the nth shell. 

By using the above argument we can now give a more precise definition for the 
shells used in our method, namely that the position vectors of lattice sites belonging to 
the same shell are connected by the local symmetry transformations of the lattice. For 
simple lattices this definition coincides with the conventional definition of shells (i.e. 
sites with equal distances from the origin), but generally it is not true. For example, 
for diamond structure in the sixth shell (in the conventional sense) there are 24 atoms, 
but only 12 of them are connected by the tetrahedral symmetry operations T, of the 
diamond lattice and therefore they have to be separated into two different shells. 

Finally we can rewrite equation (6) by introducing the abbreviation A for the 
(Z', I ,  p) indices in the following way: 

I A ( n )  = YA(n) + C zA,* , (n7n')~A,(n' ) .  (12) 
=*;fa A' 

Here the elements of the matrix Z can be easily expressed in terms of the elements of 
the matrix 2 by comparing equations (6) and (12). Equation (12) is the main result 
of our paper. For example, for s, p and d states (A = 1,.  . . , lo )  the solution of 
equation (12) means the inversion of a 10N x 10N matrix, where N is the number 
of shells considered (usually three to five shells are sufficient to ensure the required 
accuracy). From the derivation of our main equation it is obvious that our method is 
the most efficient for such a-values where the screened structure constant is localized 
for a few shells. Based on equation (12) it is possible to define the most localized 
structure constants explicitly in the following way. Let us define the quantity 

0) 

r n a ( " n r a p r a d )  = CCC.,. (13) 
n=ho A 

(One could, of course, modify this definition, e.g. by introducing some weighting 
factors in the n, Aaummation, which would lead to slightly different results.) In the 
localized region the n-summation can be truncated after a few shells beyond no. The 
most localized screening constants can be defined now from the minimum of I?. 'hiis 
is illustrated in figure 1 where the quantity r is plotted around its minimum as a 
function of a,, ap and ad for the Fcc structure. The values of the most localized 
screening constants obtained in this way and the corresponding two-centre integrals 
are tabulated in table 1 for cubic, and in table 2 for the diamond structure. We 
calculated the two-centre integrals with the a-values given in [2] and compared them 
with those tabulated in table 1 of [2]. We found that even for such a loosely packed 
structure as sc the deviations are not higher than a few per cent. 

One possible field of application of the method is the following. The structure 
constants of twocentre form obtained by solving (12) may serve as an input for an 
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2.0 
a, 

Figum L The quanliiy r3 de6ned in equation (13) 
as a fundion of @)as, (b)a, and @ ) a d  around ifs 
minimum for an FCc lattice. I 

Table 2 Wocenue integrals for the diamond laltice. The resuls are oblained by solving 
equation (12) for ten shells for Ihe optimized localization parameters. 

Diamond 
0. = 0.346546 
aP = 0.056 125 
old = 0.014006 

I Shell 1 Shell 2 Shell 3 Shell 4 

so  -1848 -0.120 -0.027 -0.006 
spo 3.904 0.199 0.044 0.009 
ppm 8.554 0.341 0.095 0.016 
ppn -1.663 -0.085 -a014 -0.005 
sdo -4.659 -0.191 -a052 0.009 
pdo -1i.z.75 -0.275 -a116 0.00s 
pdrr 3.472 a m  0.014 0.011 
ddo -17351 -0.065 -0.178 -0.003 
ddr 7.989 0.482 0.0% 0.012 
dd6 -1.601 -0.013 -0.005 -0.001 

iterative procedure to solve the original Dyson equation (1) without using the two- 
centre approximation. Another possibility is to apply a similar procedure for the 
nadependent structure constants using energy-dependent two-centre integrals. This 
would allow us to investigate the problem of the energy dependence of the most 
locllized screening parameters [TI. 
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r 6 x z w  Q L  n r E X S X  ( b )  r II x z w  Q L  n r c K S Y '  (4 

Flgum Z Band Svudure d silimn using sp xraening (U) with hvo silimn atoms and 
hvo empty sphercr pcr unit e l l  with optimized ax weening (e. = 0.298454 and 
op = 0.027 172) and @) with huo silimn atoms pcr unit cell with optimized diamond 
ancening (cr. =0.316251 and crp =0.036422). 

F b r e  3. Band sWcture of silimn with WO silicon 
atoms and WO emply spheres per "nil cell using the 
optimized B x  IwocenIre integrals given in table 1 
[or qd screening. 

Finally, we have tested our method by calculating the band structure of silicon, 
first using the sp screening shown in figure 2 optimized for the BCC structure (two 
Si atoms and two empty sites per unit cell in figure 2(a)), and then for optimized 
diamond screening (two Si atoms per unit cell in figure 2(b)). A comparison of the 
figures reflects the accuracy of the twocentre approximation for an open structure 
such as diamond using a minimal basis set. In figure 3 we have plotted the silicon 
band structure using spd screening optimized for the BCC structure (the screening 
parameters are given in able 1). The results are in reasonable agreement with those 
obtained hy Christensen [SI. In the calculations we used the potential parameters 
given by Andersen et ai 141. 
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